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1.0 INTRODUCTION AND SUMMARY OF RESULTS

Classical analyses of random rough surface scattering [1] are capable

of providing precise quantitative predictions for two distinctly different
r

types of surfaces; the gently undulating surface having large surface height

excursions, and the surface characterized by small height and slope excur-

sions. For the former case, the solution assumes the validity of the physi-

cal optics approximation for the current induced on the surface by the inci-

dent electromagnetic fields; it, therefore, comprises a high frequency solu-

tion to the scattering problem. In the case of the latter surface, a

boundary perturbation technique is employed and the resulting solution rep-

resents a low frequency limiting form. That is, the height of the surface

perturbations must be small relative to the electromagnetic wavelength. The

physical optics approach can be applied to surfaces having small height ex-

cursions, however, such an application does not yield the proper polariza-

tion dependence.

For surfaces characterized by many scales* of roughness, the so-called

composite surface scattering theory [2,3,4] has been developed as a means

for predicting the behavior of the electromagnetic fields scattered by the

surface. In this approach, the scattering in the near-specular direction is

dominated by the physical optics solution, whereas the large angle of inci-

dence perturbation contribution is modified due to local tilting of the

mean flat surface by the large scale surface components. The total liver-

age scattered power is the incoherent sum of the physical optics and the

*The terminology large scale and small scale refers, approximately, to the
height of the surface excursions. The large scale heights ara measured rel-
ative to the mean flat surface. The small scale heights are measured rela-
tive to the large scale surface (see Figure 1). A more precise dpEtttfta,'1
in terms of the surface height spectrum will be given in. section 2.^^%



tilted perturbation solutions with restrictions (in observation space) on

the regions of validity of the sum. More recently, an alternate attack on

the problem of scattering by a surface with many scales of roughness has been

proposed [5]; however, the basic approach employed in the analysis has

been seriously questioned [6]. Although the composite model of scattering

by surfaces possessing many scales of roughness is very satisfying for small

and large angles of incidence, i.e. where either the physical optics or the

perturbation solutions are dominant, it would seem that additional analyti-

cal effort is required for the transition region between the two solutions.

The original intent of this investigation was to find a solution to the

composite surface scattering problem which provided for a continuous tran-

sition between the near specular physical optics and wide angle tilted plane

Bragg solutions. As will be shown, the results obtained herein not only de-

scribe the transition, but, to the accuracy of (1) the first order pertur-

bation theory, (2) large electromagnetic wavenumber, and (3) the inclusion

of only physical optics or small scale diffraction * , are essentially exact.

Unlike the conventional composite surface scattering theory, the present

approach is based on analytical techniques - rather than physical considera-

tions; the physical considerations are introduced after the final result is

obtained in order to verify known limiting behavior.

The analysis employs a perturbation technique developed by Burrows [7,

8,91 which, because of its simplicity, is the key to the entire solution.

ThH zeroth order solution is taken to be the physical optics scattering re-

sult while the first order perturbation term uses the physical optics result

*Surface foatures such as edges and cusps are not amenable to analysis by
C''Jrst olt]F\r perturbation theory and are not considered here.

2
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as the unperturbed solution. In order to use this particular approach, the

surface height spectrum must be split into two contiguous regions; the large

scale surface height (^ 2) represented by the low frequency region is assum-

ed to be sufficiently smooth so as to form the unperturbed surface. This

unperturbed surface is amenable to a physical optics approach for determin-

ing the scattered fields. The small scale surface height (^ s
 ) represented

by the high frequency part of the spectrum is assumed sufficiently small

so that a first order perturbation of the physical optics solution is an

adequate description of its scattering properties. Since the analysis also

requires that C  and ^s be independent, the surface is assumed to be jointly

Gaussian. The use of spectral dichotomy introduces a dependence in the solu-

tion upon the wavenumber where the spectral splitting occurs (kd). This

wavenumber cannot be completely specified, but it can be bounded from one

side by the small height requirement on^s , i.e. 4ko ^2 << 1, where ko is

the electromagnetic wavenumber and 
^2 is the mean square height of the small
s

scale structure. However, physical considerations are introduced to show

that k  can, in fact, be rather tightly specified. The specification of k 

will depend upon the surface height spectrum.

In order not to overly obscure the basic approach, the analysis is re-

stricted to the case of backscattering from a perfectly conducting surface;

the extension to bistatic scattering from a dielectric interface follows es-

sentially the same procedures. The evaluation of the first order perturba-

tion mean square power, including shadowing, is greatly facilitated by iden-

tities developed by Stogrya [10] and Sancer [15]. Using Fourier transform

techniques, the first order perturbation scattering for 4ko ^ >> 1 is

H
shown to comprise two terms. The first involves a convolution in the wave-

number domain of the surface height spectrum, a polarization dependent

3	 ai
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function, a shadowing function, and a Gaussian function whose width is de-

termined by the large scale mean square slopes. The second term is identi-

cal to the first except that the convolution integration is over a finite

domain which, in turn, is determined by the wavenumber kd . The sum of these	 e

two terms along with the geometrical. optics* result provide for a continuous

description of the scattering. Under the assumption of small large scale

mean square slopes, the result is essentially identical to the conventional

composite surface result except in the transition region between the geomet-

rical optics and first order perturbation terms. 'Then the large scale slopes

are not small, the two results are not in obvious agreement; however, a nu-

merical comparison would be required to determine the degree of error in the

conventional result.

For an isotropic height spectrum and small large scale slopes, the re-

sult reduces to a particularly simple forma A. numerical example is present-

ed wherein the behavior of the solution is studied as a function of the wave-

number kd . Based on the criteria that kd be as small as possible (to insure

that the large scale surface is sufficiently smooth) and that 4ko ^S « 1,

ti

	

	
the results of this example indicate that k  should be chosen according to

4k2 C2z 0.1. Using this criterion and a o = 2 cm, ad was computed to be 27T cm.

That is, the geometrical optics solution is assumed to be accurate for all

surface features having wavelengths greater than 3),o while the first order per-

turbation term is assumed to be valid for all features having wavelengths

less than 3X
0 . 

To the accuracy of the basic scattering mechanism assump-

tion, i.e. geometrical optics or small scale diffraction, this computed value

of ad appears to be reasonable.

*Since it was necessary to assume that 4ko ^t >> 1, the physical optics scat-
tering is equivalent to the geometrical optics limit.

n



In addition to the continuous transition property of this result, it

also exhibits two other important features. As the electromagnetic wave-

length, Xo , increases then so must ad . Consequently, the large scale mean

square slopes will decrease and the geometrical optics result will increase

at normal incidence and decay more rapidly with angle of incidence. Hence,

there will be a frequency dependence in the geometrical optics result which

is not predicted by conventional Kirchhoff analysis but has been experimen-

tally observed in radar studies of the moon [11]. The use of a truncated

spectrum in calculating the (geometrical optics) effective mean square slopes
3

was originally proposed by Hagfors [ 12]; such an approach has now been veri-

fied and explained. It will also be shown that the first order perturbation

result gives rise to depolarization which is dependent on the large scale 4

slope; when the large scale slope is small, the depolarization is essential-

ly zero, however, when these slopes are large the depolarization may not be
,A

negligible especially near grazing incidence. Further calculations are re-

quired to ade quately assess the degree of depolarization.

2.0 SURFACE DESCRIPTION

The scattering surface is taken to be perfectly conducting and infinite

in extent along the x and y coordinate axes (see Figure 1). The height of the

surface z= C(x,y) is measured with respect to the z = 0 plane which is chosen

suct that the average height of the rough surface is zero, i.e. ^(x,y) = 0.

The random surface height ;(x,y) is assumed to comprise a superposition of a

sufficiently large number of zero mean, independent "component" heights so

'	 that ^ (x,y) and all of its derivatives are Gaussian [ 13]. In addition, the

surface is assumed to be free of edges or cusps since such features are not

adequately accounted for by the theory to be presented [7]. The spectrum of

5
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Figure 1. Composite surface C as a superposition of large (r Q ) and
small scale (r ) und>>lation5. The z = 0 plane corresponds

I	 to the mean surface. The surface S is the unperturbed
(large scale) surface. 	
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the surface height undulations is given by S(kx,ky) where k  and k  are wave-

numbers along the x and y-directions, respectively. Since ^(x,y) is a linear

sum of statistically independent "component" heights, the sum may be rearrang-

ed into the following form:

VX,Y) = ^R (x.Y) + ^a (x.Y)	 (1)

where ^k and ^a are also independent, zero mean, Gaussian processes. The

spectrum for ^ (x,y) is S(kx,ky) for CI XI < kd) n (IkY I< kd), while the spec-

trum for ^ a (x,y) is S(kx,ky) for (IkxI > kd ) U 
(I ky I 

> kd). The choice of the

wavenumber kd is such that the following two requirements are satisfied for

the large and small scale surfaces, respectively;

4ko C2 >> 1	 (2)

4ko gs << 1	
I 
	 =.I^ax1 < 1	

Ia'sl	 I^aYI < 1
	 (3)

where k  is the wavenumber of the electromagnetic field incident upon the

rough surface. In addition to (2), it is implicitly assumed that for the

large scale surface, i.e., ^k (x,y), the radius of curvature is everywhere

large relative to the electromagnetic wavelength a o = 27r/k0 . Since CQ(x,Y)

and s
 (x,y) are independent, the surface height spectrum may be expressed as

follows:

S(kx,ky) = S R (kx k y ) + S s (kx.ky)	 (4)

where

SR(kx. ky = S(kx ky)	 (IkxI <kd ) n (Ikyl <kd )	 (5)

7
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S a (kx , ky) = S (kx , ky)	 (1kxI > kd ) U (I ky I > kd )	 (b)

Equations (1) and (4) along with the fact that CQ and ^s are zero mean Gaus-

sian are crucial to the development to follow. If ^(x,y) is non-Gaussian, it

is not clear that the densities of ^, and ^ s and their derivati+;a:s can be

uniquely defined [14]. More importantly, however, is the fact that spectral

dichotomy as given by (4) may be invalid. That is, if ^(x,y) is non-Gaussian

then either it is not a linear superposition of the "component" surface

heights or there is not a sufficient number of statistically independent

"component" heights, and either of these conditions would invalidate (4). The

analysis presented here requires Gaussian statistics. When the large scale

slopes are small, the Gaussian assumpe.on can be removed provided spectral

dichotomy is still applicable; however., the analysis would necessarily have

to be modified. For the case of the ocean surface, nonlinearities are a major

source of concern and their effects are required to be small for this analysis

to hold.

The purpose of the above discussion is to set the stage for the applica-

tion of Burrows' perturbation technique to the computation of the fields scat-

tered by the random surface. For kd sufficiently small relative to ko (the

electromagnetic wavenumber), the artificial surface z = ^k (x,y) will be gen-

tly undulating and will, therefore, be amenable to a physical optics analysis

for the scattered fields. Assuming that (3) can also be satisfied, the small

scale surface height ^ a (x,y) can be treated as a slight disturbance of Ck(x,y),

and the first order perturbation of the physical optics fields can be computed

using Burrows' most recent formulation [ 9]. The technique of perturbing the

physical optics solution to account for small amplitude surface distortions

has previously been applied to deterministic scattering by a large sphere, and

8
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excellent agreement with numerical solutions were obtained [7]. It can also

be shown that for a slightly perturbed planar surface, Burrows' theory re-

sults in the classical Rice solution with a considerable reduction in mathe-

matical manipulations. In essence, Burrows has provided the formalism

required to solve the composite surface scattering problem to the accuracy of

first order.  perturbation theory; this paper presents the details necessary to

go from formalism to results.

3.0 APPLICATION OF BURROWS' PERTURBATION THEORY

Burrows has shown that for a perfectly conducting scatterer, the first
+

order perturbation scattered field, 6E 	 given by the following expression

[(3) of 91:

SEl•j' = jwo 4 f(eo n • Ei n • Ei+µo nx$i •nxHi) ^sdS0 	(7)

where the unprimed fields are incident fields evaluated at the unperturbed

surface So , and the primed fields are incident fields evaluated at S o due to

an electric current element 
+
J' at a distance r from the surface. The unper-

turbed surface So is assumed to be sufficiently smooth for the application of

the physical optics assumption. Also, n is the outward directed normal to the

unperturbed surface, w  is the radian frequency of the incident field, and eo,

Po are constitutive parameters of free space surrounding the scattering sur-

face. The prime and unprime notation refer to different coordinate systems;

a convenient shorthand notation for bistatic scattering and principal or cross

polarization sampling. For the purposes of this paper, it is more convenient

to replace j' by an equivalent plane wave [7]; then, using

9
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E 112

Hi - 
Cu 0

and letting the primed and unprimed coordinates be identical, i.e., backscat-

tering, (7) simplifies to the following form;

k2
SEl°Eo - ^r exp(- j k0r)	 [2(n•Ei)(n'Ei) + (n.ki)2(Ei Ei), Cs dS0	 (8)

The primes in (8) now imply a possibly different polarization than the un-

-r
primed fields. The quantity Eo is the reference amplitude and polarization

of the (primed) field. For the principally polarized component of SE

E E' = E2 , while for. the cross polarized component of Al , E E = 0. The

unprimed fields have the same reference amplitude as the primed fields,

i.e., E 
o . 

In (8), k. specifies the propagation direction of the incident
i

fields.

The orientation of the plane of incidence (and scattering) relative to

the surface referenced coordinate system is shown in Figure 2. The incident

wave vector is at an angle a with respect to the z-axis, and its direction

relative to the x-axis is specified by the angle ^. For the present, the

orientation of the x and y-axis is arbitrary, however, it will be fixed by

subsequent considerations. The wave vector is given by

r
k.1. = koki = k0 (- sin 6 cos ^x- sin 6sin^y -cos 8z)	 (9)

while a position vector from the origin to any point on S 0 is given as

r= x x+ y y + z	 (10)

The unit normal to the unperturbed surface S0 is

10
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Figure 2. Orientation of the plane of incidence (and scattering)
relative to the surface referenced coordinate system.
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-CR,xx -^Ryy+lz	n =	 (11)

1+^Rx +^Z2

The prime and unprime incident electric fields at the surface S o may be ex-

pressed in the following manner: Ei = Eo exp(- it ro)ep and

Ei = Eo exp( -jki ro)ep , where p and p' denote the polarization of the re-

spective fields. For horizontal polarization,

	

I = - sin x + cos "y	 (12)

while for vertical polarization

e = - cos 6 cos ^ x - cos 6 sin ^ y + sin 6 z 	 (13)v

Thus, for an incident field of polarization p, the backscattered first order

perturbation field with polarization p' is given by the following;

6Epp
E k2

	

	 !Jr
, = nr exp (- j or)J f [2(n•ep)(n•ep,) + (n•ki)2(ep'ep^)1

-r -r	 2	 2 \l 1/2
• exp(- j 2ki ro) Cs Cl +^Rx+4Ry/	

dxdy	 (14)

With the following substitution;

2

r pp, ORx,4Ry) __

2(n • 9 )(n • e ,) + (n •k )(e •e ,)
A	 P	 i	 P P	 (15)

02-
x+^Ry

equation (14) reduces to

E k2

6EpP, _r exP (- J kor)ff rPP, (
CRX> 4Ry) exp (-j 2ki• ro ) ^s dxdy	 (16)

r
i

12
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The zeroth order or physical optics field is given by [12]

E k d ,	 r
6E 0 	 -	

o o PP exp (- J k r)
J
	exp (- j 2k • 'r) dxdy

PP	 21Tr cos 0	 o	 i o

where

(Il

l PI=P
^PP	 0 p'^p

The backscattered electric field with polarization p'for an incident field

with polarization p is, therefore,

Epp , = 6EPp , + 6EPP, (18)

The accuracy of (18) is dependent upon the accuracy of the first order per-

turbation and, if (16) and (17) are used, the smoothness of the unperturbed

surface S .	 From a more fundamental point of view, the accuracy is deter-
o s

mined by the basic assumption of two scattering mechanisms, i.e. physical op-
s

tics and small feature diffraction. 	 Since edge diffraction need not be con-

sidered because the composite surface has been specified as free of edges, the

two-scattering-mechanism formulation should be adequate.

The backscattering cross section per unit area is given by

lim	 lim	 2	 I E	 ,I2	 1
pZapP ,(e,^) = r-*m Ai11^	 A	 j

JI
(19) a

111	 Eo 4
s

where the over-bar denotes an ensemble average. 	 Since 4s is a zero mean

process, the cross products in (19) are zero and g

IEPP^IZ	 1
6EPp, I	 + 16EPP ,I 2 (20)

x

a_v

13
,q

r^

j
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and because ^s 
and ^Q are independent processes,

W W

^pP^(6 . ^) = 2k2 dpp ,
 
see 2 6 R(6,^) J J exp(- j koxAx-j koyAy)

• exp (- 4ka cost 6 ^1 11 - PR (Ax,Ay)] ) dAx dAy

4ff/	 l	 r (	 11
Tr

+0
\rpp' R,xl' ^Ryl) rpp' { 2x2, 4Qy2 / exp Lj B \If 1 -'R'2 )]>

pill

C2 P s (Ax, Ay ) exp (- j koxAx - j koyAy) d4x dAy	 (21)

The new functions in (21) are defined as follows; R(6,^) is the shadowing

function for the large scale surface [ 15], pk(4x , Ay) is the normalized auto-

correlation function for the large scale surface excursions, kox =_2k 0 
sin6cos^,

koy =-2k 0 
sinOsium,  B = 2k0cos6, and p a (Ax,4y) is the normalized autocorrelation

function for the small scale structure. Multiplication of the physical optics

term by R (6,^) is justified by Saucer ' s [15] and Barrick ' s [16] analyses. That

is, Sancer showed that the effect of shadowing on the slope density scattering

result was equivalent to a multiplication by the function R(6,^); Barrick had

previously demonstrated that the slope density and physical optics results

were equivalent for 4k2 Cos 26 ^2 >> 1, i.e. the geometrical optics limit. Thus,

the first term in (21) is strictly only valid in the geometrical optics limit

and this restriction will be satisfied later in the analysis.

The integration in (21) is restricted to the projection of the illumina-

ted areas of So onto the x-y plane [ 7]. Thus, the second term in (21) may be

rewritten in the following form;

14



4k

ff<
I(xi^ yl)I(x2' y2 )fpp , (^ yxl l ^a

^ m

C^PP1(0.^)1l = 
11O

2'^ky1RY2)

• eXp[JB(^. 1 -CR. 2 )] 
> 0s P s (Ax>AY)

• 

	

• exp(- j kox Ax -9 koy Ay) dAx dAy	 (22)

where I(x,y) is one if the point (x,y) on S o is illuminated and zero if it is

in shadow and the contributions from the shadow boundaries have been neglected.

The function f , is merely equal tot , 	 ,^	 rp ,	 ,^	 and the
PP	 PP C Rxl kyl^ PP C Yx2 f'y2^

notation C pp,(6,^)J implies the contribution of the first order perturbation
1

to v 0 ,(9,¢). Equation (22) is the two dimensional Fourier transform of the
PP

product of the <•> term and g$ Ps (Ax,Ay). Hence, (7,2) is equal to the two

dimensional convolution of the transforms. The transform of es Ps(Ax,Ay)

is just the spectrum S(kx,ky) for (Ikx I > kd) U (lky I > kd). The transform of a

function having the same form as <•> was first derived by Stogryn [10] under

the assumption of no shadowing. Sancer [15] subsequently included shadowing,

i.e. the I functions, and showed that, in the limit of k 0- , Stogryn's earli-

er result should be multiplied by the shadowing function R(6,^). In particu-

lar, it is easily shown, using Stogryn's shadow corrected result, that

el

15
A,

i
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f2f <
I(xl ,Y'1)1(Xpy2)f

ppI ("X.`
Y'x

2"9yl ' ^zy2 1exp
[J B(^, ^R_

—co --m1l 1 

Y,	 k	 k	 k	 '

	

•xP(-jb'oxAx-jkQyAy)d3xd0y s R(6,)fpP' 	 Bx ' Bx B	 B

	

frrz-J exp ( j (koxAx +k Y?6y ) 4kac ost 6	 11-P 
z 

(Ax, Ay)] ddxddy.
(23)

For no slli\([owing , i.e. R (B,f) = 1, Stogryn demonstrated that (23) is valid

provided either 4ko coat 6 r >> 1 or the large scale slopes are small.

However, in order to properly include the shadowing function, it will be nec--

essary to be more restrictive. That is, (23) is strictly only true in the

geometrical optics limit for only then is shadowing properly accounted for by

the multiplicative factor R(6,^). Hence, for all further analysis it will be

necessary to require that 4ko cost 0 ^2 >> 1. In addition, it is convenient

at this point to fix the orientation of the x and y coordinate axes by requir-

ing that ^Yxy = 0. Such a choice simplifies the details of the develop-

went to follow and also implies that the surface height spectrum has fold-

over or mirror symmetry about both the k  = 0 and k
y 
=0 axes. Another con-

.

sequence of this choice is that the direction of incidence, i.e. the angle

is now specified relative to the surface height spectrum.

The shadowing function for a anisotropic Gaussian surface was shown by

Sancer [15] to have the following form; R(6,^) = (1 +C o)_l  where

*The validity of (23) when the large scale slopes are small has recently
been experimentally verified using backscattering measurements acquired by the
Skylab radar altimeter [17].
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2C0Tr 0	 tan 6 e	 ctn 116	 er£c	 ctn  	 24)
1 2

_	 — Ivy I)	 "^[ 2 1v^o 1 J	 (21 t 1)
1-1 2

and

W0 _ — ^kx Cost

All terms in (23) involving ^o appear as 1$

as follows;

2 k2
2	 tang 6	 ^kx ox

101	
2k2 cos t 60

- ; 2 sin 	 (25)ky

0 ltan2 6 which can be rewritten

2 

k 
2

- + X22 oy	 (26)
2k2 cos 6

where, for clarity, the definitions of k ox and koy are repeated below

k
ox	 o

- 2k sin6 cos ^

(27)

k
oy	 o- 2k sin6 sink

Using (26) and (24), the appropriate expression for R(k ox, koy) is given below

R( kox	 koY 1 _	 1 rr	 2 ( kox l
2	 2 r koy 2 11/2

2k0 cos 6 2k0 cos 6 /	 2r 12 
{^A,x \ A0 cos 6) + sky \ 2k0 cos-U- )   } I

•P
	

2	 k	 2 1	 k	 2}
2	 ox	 2	 oy	 J

^kx \ 2ko cos 6) + sky C2k0 cos 6
-1

1/2

- I erfc2	 Z l	 2	 + 1	 (28)
2	 kox	 2	 koy l

^Rx (2k0 cos 6) + qty (2k0 cos 6/

It should be noted, in (28), that there is no explicit restriction on the

17
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angle of incidence to the range of 0° < O< 90°. However, such a restriction

is implied because e >g0, would imply illumination of the surface from below
the z = 0 plane. Therefore, for - 2k0 > kox > 2k  and - 2k

0
> koy> 2k  , the

shadowing function in (28) is identically zero.

Thus, in order to completely specify the transform of the <•> term in

(22), it only remains to determine the transform of

exp (- 4ko cos2 8 it 1 1 - PR (Ax, Ay)] y

Since 4ko ^2 cos2 e >> 1, the large scale normalized autocorrelation function

can be effectively approximated by a two term power series, i.e.

PR(Ax,DY) z 1 - 2 LOkx (4x) 2 + Y (AY) 2,	 (29)

Thus

m m

n f f exp { J (kox4x+koy4Y) - 4ko cos 2 B C2 ^l -Pf (4x,4y)]) d4x d4Y

1/2

- 
pe ^Ry] e -
	 kox _ -	 k y _	 30XP	 ( )

4ko cos 2 0	 8k2 cos 2 0 
2	

8k2 cos2 0 2
o	 9,x	 o	 ky

where the specular term at normal incidence (which is implicit in the left

hand side of (30)) has been ignored since 4ko ^Z >> 1 (see [10]). Combining

(30), (28), and (24) the Fourier transform of the <•> term in (22) is as fol-

lows:
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0o m	 2	 2 1/2

	

f f 	k

	 k
<->exp(-3kxAx -JkyAY)d4xd0y = Zx ply
	 R	 x	 v

	

4ko cos 0	 C2ko cos0 , 2k 	 0)

k	 k	 - k2 	It

	

Pp' (2kocos0 , 2ko os0) ems'[8k2Cos2a 2	 8k2 Cos 26 ^^^	
(31)

o	 kx	 o	 xy]

for 4ko cos 2 8 ^2 >> 1. Using (31) and the fact that the transform of

C2 ps (Ax,dy) is S(kx ,ky) for (1kx I > kd) U (lky I > kd), the convolutional equi-

valent of (22) is

k2 sect B	 WrW
LQPP' (e,^)]	 0	 1/2 fj

1 +kx SPY]

S(k ,k) Rx y (
kox kx koY ky`\ 2ko cos0 ' 2kocos0

	(k -k	 k -k	

[8k 

(k -k ) 2 	(k -k )2

	

2 (\ ox x	 oy y	 ox x	 _	 oy Y	 dk dk

	

rpp' 2kocos0 2k0cos0 exp2Cos20 ^Qx
	

8kocos'20 ^R	
x Y

Y

kd kd	
/

	

ko sec  B	
Y	

/ kox__U_	k °y -It

	

_ rr 2 2 1 1 2 I f S(k
x ,k ) R 2koco 	 2kocos0 J

	

7F Zx gay J	 -kd

	It -k	 k -k	 - (k -k ) 2 	(k -k )2
r 2	 ox x	 oy y e	 ox x	 _	 oy y	 dk dk

	

pp' 2k cos0	 2k cos0) xP	 2 2 2	 2	 2	 x y

	

0	 0	 8kocos 0 £x	 8koc:os0 ^2Y
(32)

The first term in (21) was evaluated in (30), i.e.

6 , sec 4 6 R(0,^	 2	 2

[aPP^(e,^)^ - PP
	 1^ exp - /cos + sin 1 tan20	 (33)

	

0	 2[CZ2 ^Qy]	 2^ 2 2 ^ 2
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Since

a 0 ,( 0 4) _ [a 0 1 (84	 + CaPB, (0'$)]
0	 1

the backscattering cross section per unit area is completely specified by the

sum of (32) and (33). The derivation leading to (34) required only one as-

sumption or condition, namely, 4ko cos t 6 CR >> 1. In the subsequent parts

of this paper, interpretations of (34) will be presented which show that this

condition can be violated when the slopes of the large scale surface structure

are small. This fact confirms Stogryn's original observations even when shad-

owing is included.

4.0 COMPARISON WITH CONVENTIONAL COMPOSITE SURFACE THEORY

Equations (34), (33) and (32) represent the general expressions for the

scattering from a Gaussian, perfectly conducting surface characterized by an

anisotropic spectrum and possessing many scales of roughness. The accuracy of

the result is dependent upon the large scale structure having large height ex-

cursions and small curvature, while the small scale structure must be charact-

erized by small height and slopes.

The geometrical optics term given by (33) dominates the scattering near

normal incidence. Except for the case when the large scale slopes are very

large, the shadowing function has little effect on the result. The only im-

portant difference between (33) and previous results [15] is that (33) is de-

termined by the large scale slope only; that is, the slope of the spectrum

in the wavenumber range (Ikx 1 < kd) h (lky1:<k 
d)  

The wavenumber k  is deter-

mined by the condition (on the small scale structure) that 4k o ^s <<l;

thus, as ko changes, so also must kd change in order to satisfy 4ko C 2 << 1.

However, as k  varies,	
C2	

and ^R2 will also change. The net effect

20
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of this process is to introduce a frequency dependence in (33) through the

use of a truncated spectrum in computing the large scale slopes. The con

of a truncated or filtered spectrum was first hypothesized by Hagfors 1121 in

an attempt to explain lunar scattering data and the observed frequency depen-

dence of near normal incidence scattering. More recently, Tyler [18) has at-

tempted to definitize Hagfors filter theory by basing the spectral truncation

wavenumber on a criterion related to the radius of curvature of the large

scale surface. Both of these approaches base the point of spectral truncation

upon a characteristic of the large scale structure, whereas, it should be

based upon the small scale structure, i.e., 4k2 ^s << 1. The inadequacies

in these earlier works probably stem from a failure to consider both types of

appropriate scattering mechanisms, i.e. geometrical optics and small scale

diffraction, and their proper combination.

In theory, the conventional composite surface scattering theory postu-

lates a truncated spectrum for computing the large scale characteristics; how-

ever, little attention has been given to the fact that, as shown above, this

will introduce a frequency dependence in the near normal incidence scattering.

As is obvious from the above, the degree of frequency dependence is determined

by k
0 
and the behavior of the spectrum in the small scale regime. Contrary to

Hagfors original hypothesis, the wavenumber Ic d does not depend upon the angle

of incidence. Many of these points will be more clearly illustrated in the

section of this paper dealing with a numerical example.

The perturbation term, given by (32), represents the effect of the small

scale surface structure upon the scattering process. The convolutional form

of (32) also clearly shows the primary impact of the large scale surface

structure upon the small scale diffraction. That is, rather than depending

upon a single Bragg wavenumber, (kox ,koy), as in the case of no large scale

21



structure, (32) predicts that the scattering will result from a neighborhood

of the Bragg wavenumber. The extent of this neighborhood is directly propor-

tional to the mean square slopes of the large scale surface structure. The

finite range integration in (32) insures that no Bragg scattering will result

from spectral wavenumbers less than kd . Since there is no small scale struc-

ture for k <k a  
by definition, the finite range integration must be included.

When 8ko cos 2 0 ^ 2 and 8koc ost 6 ^ 2 are small, t__e exponential

factor in (32) is very peaked and it is dominant in the integrand. In this

case, the integrals may be evaluated asymptotically using a form of Laplace's

method [19] with the following result;

0	 (IkoxI <kd)n(IkeyI <k d>

LAPP, 	 (35)
1

8ko S(kox , koy ) R (0, 0 ) rpP, (0, 0)	 (Ikoxl > kd) U (I koyl > kd)

Since R (0,0) = 1, and

0	 p=h, p' = v or p = v, p' =h

Ppp2 , (0,0) =	 cos 6	 p = h, p' =h

(1+sin 26 ) 2	 p=v, P , =v

and S(kox,koy) = (Tr/2)W(kox ,koy ) * ,.where W•is the s pectral notation originally

employed by Rice, (35) can be written as follows;

r

^0	 (IkoxI <'kd)n(I kny I <k d)

L a , (M)] =	 (37)1 ` 47rk0Ppp, (omwikox,koy)	 ( IkoxI>kd)U(Iknyl>kd)

*This results from the choice of symmetrical two dimensional Fourier trans-
forms, in 1/(27r), for relating S(kx ,ky) and ^I p(px,py).

(36)



23

k -k
x ox

Ex 2k0 cos 6
k -k

= y oyy 2k cos 60

equation (32) assumes the form

In the absence of large scale structure, i.e., C2 } 0, the entire surface com-

prises small scale height excursions and k  may be set to zero; thus,

lim [app, (0,^)^ = 4rrko r 2 , (0, 0) W(_ 2ko sin 6 cos , - 2k^^ sin 0 sin ^) (38) pp1
2+O

with no restriction on the range of the argument of W. Equation (38) is the

classical Rice solution for the backscattering from a slightly perturbed

planar surface. This result demonstrates that in the absence of large scale

surface height structure, (32) correctly predicts the scattering behavior.

One further point of interest is the fact that the geometrical optics term in

this limit contributes only a specular term at normal incidence, i.e.

lim C app, (0 1 0	 = 7r8pp , d (sin 6 cos ^) d (sin 6 sin ^)
2	 L	 0

^R + 0

where the term exp(-4ko ^ 2 J does not appear because it is essentially unity,

i.e. Oka ^2 4ko ^12 + ^g l « 1.

Under the following transformation of variables;

(39)



4 ka 	W fW

PP1 
(04 	 =	 1/2	 0C2ko cos 0 Ex+ kox 2k cos ocos 0 E + k

1	 [ ^Zx ^;'	 —m -	
'	 Y	 Y

^2	 ^2 ]

R ` fix, - Y^ rPP' `- x .- ^Y) exp - x _ 2Y
	

dux day

2C2a 2^LY

b b
Y x

4 ko
1/2 

3
f	

o
5^2k cos 0 

x ox	 o
+ k	 2k cos 0 

y 
+ k 

oy )

r [ 	 y]	 ay ax

2	

ex^2R( ^ ^- 
CY ) r 2 J `_ Ex . - ^Y) e	 ^ dEx dC	2 	 2

	

Rx	 sy

where

kd -kox kd -kox_
ax 	 2k cos 0

_
bx	 2k cos 0

0 0

kd - koY kd - koY__ _
ay 2k cos 0 by 2k	 cos 0

0 0

It should be noted that for either IkoxI 
>k 

d  
or Ikoy I > k d'  the second term in

(40) goes to zero very near grazing incidence because either Ex =0 or ^ Y = 0

is not contained in (ax, bx) or (ay,by). Equation (40) is now in a form suit-

able for comparison with the tilt&_ plane Bragg formula which results from the

conventional composite surface scattering theory. When the slopes of the

large scale srructure are large, i.e., ^Rx 
and ^Q9 » 1, it is not possible to
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demonstrate a direct analytical comparison. However, when the slopes are

small, it can be shown that the tilted plane Bragg scatter result is as fol-

lows, see (20];

	

2k4	
m m

r)	 o
	 jI 

g2 W(2k0 cos 0 tan 7P +2ko sine , 2k  cos 0 tan d)
z 2 

^Rx ^Ry

	

2	 2axp - tan	 - tan d d ( tan V) d (tan 6)	 (41)
	r 2	 2

	

2
°Rx	 ^4Ry

where 0 has been set equal to r, ip and 6 are tilt angles in and perpendicular

to the plane of incidence, and the angle of incidence is restricted to greater

than or equal to 30°. In obtaining (41), the small angle assumptions have

been made, i.e. sin g z tan ^ , sin 6 z tan 6. The g2 coefficients depend upon

the polarization of the incident field. For horizontal polarization,

	

2	 2	 2

	

g2 z (cos 0- sin  tan gy )4 1 + 2tan 6	 - tan 6

cos	
(42)

C	 t 0 sing 0 sing

while for vertical polarization,

2
g2 z 11 + (sin 0+cos 6 tans ) 2 + cta2 0 tan g 61	 (43)

and g2 = 0 for cross polarization. With the correspondence ^__++ tan ^ and

++ tan 6 , and setting ky	 o

deal of similarity between

is that (41) is defined as

In the limit of zero large

i = 2k  sin 6 and koy .0 in (40) , there is a great

(40) and (41). One point of obvious disagreement

zero for 0 S30* while (40) has no such restriction.

scale slope, (40) is zero for 2k  sin 0 < k  because

25



4.__	 f	 I	 I	 f	 !	 E	 ^'	 1

the two integrations in (40) cancel each other. Thus, whereas (41) is rather

arbitrarily limited to 0 Z30 * , the result in (40) has no angle limitation.

Further comparisons of (40) and (41) could be accomplished for other situa-

tions, however, such an effort is pointless since (41) is clearly an approxi-

mation to (40).

When the large scale slopes are not small, the integrations in (40) must

be accomplished numerically. In this case, the variation of R and Pp2p , about

the point gx =0, ^y =0 are very important to the result. It is, therefore,

possible that the cross polarized scattering may not be completely negligible

especially near grazing incidence. For example, with ^ =7r

r 2 -	
- ` 

4 y ^X cost 6 + 8 E2, gx sin 0 cos 8 + 4 Ey sin  0

hv( x ' Yl	 1+g2+ ^2
Y

and
is

_	 1/2

R(-fix' - 9y)	 2,77 [2 ^£x x + 2X2	 exp	
2	 2 2 1 2 2E + Co	 ,.

"t kx x	 a,y y

l-1/2	
-1

- 2 erfc r (2^,xx + 2^QYy+ 1LJJJ
the scattering will be directly dependent upon the large scale slopes. Thus,

d

the first order perturbation solution gives rise to a depolarized component

which is dependent upon the large scale slopes.

5.0 NUMERICAL EXAMPLE

s

	
Although the results obtained in section 3 present a formal solution to

a

the problem of composite surface scattering, the question of how to choose k 

c

.k
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requires further study. Since there is very little theoretical foundation for

choosin kd , other than 4k2 ^s << 1, this aspect of the problem is best dealt

with Ijy considering a specific example. To simplify matters somewhat, the

surface height spectrum is taken to be isotropic; that is, S(k,k ) depends
x y

only on the distance between any two points in the k xky plane. For such a

spectrum, 4 2 = 2 = 2 /2 where 2 is the total mean square slope of the
kx Ry Pt _	 tt _

large scale structure, i.e. t = ^kx + ^2y. The analysis will be further 	 -

restricted to the case of ^ t small. This condition permits the following
S

approximation in (32), see the Appendix for a justification of this step; 	 ry

/ k -k
R 	 koy -ky - R(0 0) = 1

C 
ox

2k cos 0 , 2k cos 0
0	 0

	

2	 ox - kx	 koy - kyll	 2
rpp' 2ko cos 0 , 2ko cos 91' Ppp , (0, 0)

Converting from cartesian wavenumber space (k x ,ky) to cylindrical co-

ordinates (k,a) where k
x	 y= k cos a and k = k sin a , and substituting in (32) and

(33) yields

CF	 pp
d , sec  a	 tang 9

exp
pp	 2	 2

^zt	 Ott

4k2 sec  9

	
f+ o PPp , (0, 0) S(k) Iaa k sin B

.Z 	 k	 ko cost 8 Rt
d

(k-2ko sin 0)2	 k sin 6
	• exp -	 -	 kdk	 (44)

4k2 cos2 0 ^2t	 k cos 9 ^2o 
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where the a-integration has been accomplished. The function I . ( • ) is the

Bessel function of the second kind. It should be noted that the integrations

in (32) exclude a rectangular area in the xk-plane while the integral in

(44) excludes a circular area. The difference can be avoided by redefining

kd in terms of the radial wavenumber coordinate and expressing the transform

relation between 45 pr (Ak) and S(k) as a Hankel transform. As in the case of

(32), there is no restriction on 6 for either term in (44) other than e< V/2.

For the surface height spectrum, the following specific form was select-

ed;

BO	 k<k
(k

2 +K2 ) 4 	 — c

S(k) _	 (45)
0	 k > k

c

Equation (45) represents a polynomial approximation to the so-called Pierson-

Moskowitz spectrum for the steady state response of the ocean surface to a

surface wind of speed V. The constant K is given by (335.2 V 4 ) 	 for k in

(em) 1 and Vin m/ sec ; this particular_ mixture of units is convenient for micro-

wave scattering problems. The constant B was taken to be 0.0046. It should

be emphasized that (45) was selected for example purposes and because expres-

sions for the autocorrelation function exist [211. No inference in regard to

the characteristics of ocean backscattering is intended or implied since (45)

is probably an overly simplistic description of the true surface. The spec-

trum of the large scale structure of the surface is equal to (45) for k< k 

while the small scale undulations are represented by (45) for k  < k< kc . Since

the wind speed dependent parameter K is small for V ^ 2 m/sec, the mean square

height of the small scale surface perturbations is given by
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I

ka - k2 

J	

(46)

The constant S is defined as 4k2 ^s = << 1. Thus, using (46), the following

relation for kd is determined;

2	 2BkokQ
kd 

Sk2+2Bk2

Equation (47), therefore, defines k  in terms of the electromagnetic wave-

number, ko , the spectral constant, B, the spectral cutoff wavenumber, kc , and

the smallness parameter S. It can also be shown that the total large scale

mean square slope has the form

rk2 +K2

Mkt. ` 2 - 16 + Rn t d 2	 (48)
\ K

Unless otherwise stated, all. subsequent results were accomplished with the

arbitrary choice of k  = 12 (cm) -1 , and k  = 3.1416 (cm)
-1
 (ao =2 cm).

Thus, using (48) and (47), the cross section is entirely dependent upon

the parameter a which, in turn, determines the size of the small scale mean

square height ^s	 If a is chosen to be 0.1, the resulting value of k  (from

(47)) is 0.95 (cm) -1 . Hence, for all surface features having a wavelength

greater than or equal to 6.6 cm, the geometrical optics part of (44) is as-

sumed to be an adequate description of the scattering process. Conversely, all

surface features having a wavelength less than 6.6 cm are assumed to be

responsible for the small scale diffraction described by the second term in

(44). A typical result for V =4.3 m/sec is shown in Figure 3 for horizontal

polarization and in Figure 4 for vertical polarization. The solid curve in

29
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both figures is the sum of the two terms in (44) while the dashed curves show

the individual contribution of each term. Of particular note in both figures

is the fact that for B :^ 10°, the perturbation result,a 0' (84 	 , levels
I pp1

out to a nonzero value. Thus, the small scale surface height perturbations

do indeed contribute to the value of a* at 6 = 0°, although the contribution

is more than 15 dB down from the geometrical optics result for this example.

The more important question to be addressed is how small should ^ be

made. From (46), as ^2 decreases then kd must necessarily increase until, in

the limit of ^a = 0, k  = k c . However, as k  increases, the geometrical op-

tics solution is required to properly account for the scattering from smaller

and smaller scale features in addition to the large scale features. Further-

more, these smaller scale features will have smaller radii of curvature.

Thus, increasing k  is equivalent to requiring the geometrical optics solu-

tion to account for small scale diffraction, which it obviously cannot. The

problem is further compounded by the fact that the geometrical optics result

forms the unperturbed solution for the first order perturbation. Thus, a

small error in the geometrical optics field may well be greatly magnified in

the perturbation field. This discussion clearly demonstrates the merit of

choosing 5 as large as possible. On the other hand, $ must be less than one

in order to satisfy the basic criterion for the suitability of the perturbs-

tion technique, i.e. , 4ko ^s << 1.

Figure 5 illustrates how a o (0) varies with 8 and, equivalently, k  for

vertical polarization; a similar variation is obtained for horizontal polari-

zation since the two results only differ by the multiplier Ppp,(0,0). As S

decreases from 0.1 (ad = 6.6 cm) to 0.01 (ad = 2.14 cm), there is a relatively

minor decrease in oW(0). More importantly, however, is the appearance of a
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dip in the vicinity of a =25°. This dip results from the fact that the geo-

metrical optics term in (44) is essentially negligible in the neighborhood of

e = 25° (even though the large scale slope increases as kd increases) while the

perturbation term in (44) has decreased. As noted in the previous paragraph,

this is an error compounding effect, i.e. a small error in the zeroth order

solution translates into a large error in the first order perturbation solu-

tion. The decrease in the perturbation term in the vicinity of 6 = 25° is due

to the fact that the Bragg wavenumber 2k  sin 25° is not within the range of

the integration in (44). For S=0.01,  k  = 2.93 (cm) -i and 2k0sin(25°) =2.65

(cm) 1 for X. = 2 cm, thus, the Bragg wavenumber for this angle of incidence is

actually a part of the large scale spectrum. For the case of a =0.5, i.e.

4k2 0s = 0.5, kd = 0.426(cm) -1 and Xd =14.75 cm which is more than seven times

as large as the electromagnetic wavelength. In this case, the dip in the vi-

cinity of 25° is almost nonexistent; however, there is a significant increase

in
 C
a ° (e)1 at 9 =0 as shown in Figure 6. Thus, if the small scale height
w J 1

criterion is violated, the perturbation solution will become comparable to or

exceed the geometrical optics term near the specular direction and this can-

not be the case. In other words, the perturbation term in (44) is in error,

near the specular direction, as should be expected. It is interesting to

note that choosing 0 = 0.5  produces roughly the exact opposite change in mag-

nitude of a°(0) as choosing 0=0.026  produces in a°(25'), and that 0=0.5  and

S =0.026 correspond approximately to a five fold increase and decrease, re-

spectively, in S relative to O = 0.1. For other values of electromagnetic

wavelength or wind speed V, the same effects are observed but the specific

numbers will change.

It would appear, from these numerical results, that a proper choice of
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4 f	 ^

kd should be based on the criterion 4ko ^S a 0.1. For the spectrum studied

here, the corresponding value for a d was about three times the electromagne-

tic wavelength and this does not appear as an unreasonable dividing line be-

tween physical or geometrical optics and small scale diffraction effects.

Any attempt to draw a more positive conclusion about the choice of ad would

have to address the basic question of the dividing line between the two types

of scattering mechanisms. That is to say, the results in this paper are based

upon the assumption that the scattering is either physical optics (or geomet-

rical optics for k  large enough) or small scale diffraction. Given this as-

sumption, the criterion 4ko ^Q = 0.1 seems reasonable. If one desires to

refine this criterion, it will probably be necessary to go to the integral

equation io ;he current induced on the surface and attempt to solve it with

a minimum of approximation. Such an approach, whether it be analytical or

numerical, does not seem to be practical at this time.

6.0

Scattering from a perfectly conducting, Gaussian distributed, random sur-

face has been analyzed using a recently developed perturbation theory. In

order to apply this technique.. the surface height spectrum was split into two

parts in the wavenumber domain. The so-called large scale part comprises the

long wavelength portion of the spectrum (k< k d ) and it is assumed that the

physical optics approximation adequately describes the scattering from these

height excursions. The small scale spectrum (k >k d )  represents the small

wavelength portion of the total height spectrum and the scattering from these

small perturbations is described to a first order by a perturbation of the

large scale physical optics solution. The point of spectral dichotomy must
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satisfy the relation 4ko ^s << 1, where ^S is the mean square height of the

small scale structure.

A derivation of the expression for the scattering cross section, 6Pp,(6,^),

is presented for both anisotropic and isotropic surfaces for 4k o ^2 >> 1. To

the accuracy of first order perturbation theory, the derivation is exact. The

results are based on the evaluation of some complicated ensemble averages and

spatial integrations appearing in previous publications. Shadowing of the

large scale surface is included in the analysis. A direct comparison with the

conventional composite surface scattering result when the large scale slopes

are small, shows essentially identical agreement except in one regard - the

result obtained here provides for a continuous transition from geometrical

optics scattering to Bragg scattering rather than a piecewise continuous solu-

tion, i.e. the sum of two angle limited solutions. The result obtained here

also indicates, directly in the spectral domain, the convolutional broadening

of the Bragg line scattering by the presence of the large scale structure.

When the large scale slopes are large, it is not possible to accomplish a

direct analytical comparison between the conventional composite surface model

and the results obtained here. However, such a comparison would only serve to

check the conventional model since the present results are necessarily more

accurate. For large slopes, it is shown that depolarization is possible but

the results are directly dependent upor, the slopes.

Numerical results are presented for a polynomial type surfz: >e height spec-

trum which is similar to the wind driven ocean spectrum. These results indi-

cate a smooth transition between the geometrical optics and Bragg scattering

regimes which previously have been obtained in an ad hoc fashion. Furthermore,

these results show that the small scale structure does contribute a small
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a

amount to the backscattering at normal incidence. For the spectral model

chosen, the calculations and the physics of the problem both tend to indicate

that the spectral division point kd should be selecte d according to the cri-

terion 4k
2
 ^s = 0.1. For k  =3.14 (cm) -1 , k  = 0.95 (cm)

-1
 and ad = 6.6 cm which

t

is more than three times the electromagnetic wavelength. The value of ad also

appears, physically, to be a reasonable dividing point between geometrical op-

tics scattering and small scale diffraction.

38



REFERENCES

1. Barrick, D. E.; and Peaks, W. H.: "A Review of Scattering From Surfaces

With Different Roughness Scales," Radio Science, Vol. 3 (New Series),

pp. 865-868, August, 1968.

2. Semenov, 9.; "An Approximate Calculation of Scattering of Electromagnetic

Waves From A Rough Surface," Radiotekhnika i Elektronika (USSR), Vol. 11,

pp. 1351-1361, 1966.

3. Wright, J. W.: "A New Model For 5ea Clutter," IEEE Trans. Antennas and

Propagation, AP-16, pp. 217-223, March, 1968.

4. Fuks, I.; "Contribution to the Theory of Radio Wave Scattering on the

Perturbed Sea Surface," Izvestia Vyshikh Uchebnikh Zavedenity, Rad--*O-

fizika, Vol. 5, p. 876, 1966.

5. Fung, A. K; and Chan, H. L.: "Backscattering of Waves by Composite Rough

Surfaces," ILEE Trans. Antennas and Propagation, Vol. AP-17, pp. 590-597,

September, 3.969.

6. Peake, W. H.; and Barrick, D. E.: "Comments on Backscattering of Waves

by Composite Rough Surfaces," IEEE Trans. Antennas and Propagation, Vol.

AP-18, pp. 716-720, September, 1970.

7. Burrows, N;. L.; "A Reformulated Boundary Perturbution Theory In Electro-

magnetism and Its Application to a Sphere," Can. J. Phys., Vol. 45, pp.

1729-1743, May, 1967.

8. Burrows, M. L.; "Surface Tolerance of a Radar Calibration Sphere," IEEE

Trans. Antennas and Propagation, Vol. AP-16, pp. 718-724, November, 1968.

9. Burrows, M. L.; "On the Composite Model for Rough Surface Scattering,"

IEEE Trans. Antennas and Propagation, Vol. AP-21, pp. 241-243, March, 1973.

10. Stogryn, A.; "Electromagnetic Scattering From Rough, Finitely Conducting

39

r

4.

 fi,

3



I	 I	 I	 I

REFERENCES (Cont'd.)

Surfaces," Radio Sciences, Vol. 2, pp. 415-428, April, 1967.

11. Evans, J. V.; and Hagfors, T.: Radar Astronomy, Chapter 5, McGraw-Hill	 ,

Book Company, New York, 1968.

12. Hagfors, T.; "Relationship of Geometric Optics and Autocorrelation Ap-

proach to the Analysis of Lunar and Planetary Radar," J. Geophys. Res.,

Vol. 71, pp. 379--383, 1966.

13. Longuet-Higgins, M. S.; "The Statistical Analysis of a Random, Moving

Surface," Phil. Trans. Roy. Soc. London, Vol. A249, pp. 321-387, Febru-

ary, 1957.

14. Beckmann, P.; "Scattering By Non-Gaussian Surfaces," IEEE Trans. on An-

tennas and Propagation, Vol. AP-21, pp. 169-175, March, 1975.

15. Sancer, M. I., "Sh—niow-Corrected Electromagnetic Scattering From A Ran-

domly Rough Surface," IEEE Trans. on Antennas and Propagation, Vol. AP-17

pp. 577-585, September, 1969.

16. Barrick, D. E.; "Relationship Between Slope Probability Density Function

and the Physical Optics Integral In Rough Surface Scattering," Proc. IEEE,

Vol. 56, pp. 1728-1729, October, 1968 (also correction, Vol. 57, p. 256,

February, 1969).

17. Brown, G. S. (Editor); "Skylab S-193 Radar Altimeter Experiment Analyses

and Results," NASA CR-2763, Applied Science Associates, Inc., Apex, N. C.,

May, 1976.

18. Tyler, G. L.; "Wavelength Dependence In Radio-Wave Scattering and Specular

Point Theory," Radio Science, Vol. 11, pp. 83-91, February, 1976.

19. Evgrafov, M. A.; Asymptotic Estimates and Entire Functions, Gordon and

Breach Publ., New York, pp. 20-23, 1961.

)

40

i
if
i

1



I	 IV,

REFERFNCES (Cont'd.)

20. Valenzuela, G. R.; Liang, M. B.; and Daley, J. C.: "Ocean Spectra For

A

	 The High Frequency Waves As Determined From Airborne Radar Measurements,"

J. Marine Res., Vol. 29, pp. 69-84, February, 1971.

21. Miller, L. S.; Brown, G. S.; and Hayne, G. S.: "Analysis of Satellite

Altimeter Signal Characteristics and Investigation of Sea-Truth Data Re-

quirements," NASA CR-137465, Research Triangle Institute, Durham, N. C.,

April, 1972.

41

r



T!	 f	 i	 l	 l
APPENDIX

The purpose of this Appendix is to justify the approximation that for

small 
T eX and 4fy

p2	 2

[aDP,(@.^)] 	 k  sec B1/2 R(0,o) rPP1(0'0)
	

3 
S(kx'kY)

1 rC 2 2
X

• e xP -
 (k oxkx)2— -	 (koY ky)2
	

dk dk
I x Y

8ko cos t @ ^fX	 Skoc ost B ^R J
Y

kd kd

k2 sec2 @	 r r

o 	
1/2 R(O,o) 

r2

	

pp i
 (0'0)	

1	 1 sfk _k 1

r
x

 2
 CRY

	

- (kox kx) 2 	(kox 1
• exp	 _ -

	

8ko cost @ 2X 	 8ko cost

Under the following substitution;

k	 k
__	 x	 =

nx 2k
0
 cos @	 ny 2k

a
 c

each of the terms in (32) are of the form
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I f S (2k cos 6 rj , 2k cos 6 rl ) R I 	 ox	 — n	 koy — ray)

	

)
_ 1 2 J J	 o	 x	 o	 y	 2ko cos 6	 x, 2k0cos B

kx 2r 	 ^ky

k2	 k	 2

	

OX
	 oy _

. r 2	 kox	 koy	 C2kocose - nx) - 2k
0
cos6 ny)

	

PP2kocos6 -nx , 2k0cos6 - ny) exp -	
Z	 2	

dnxdnv

	

kx	
2^ky	 (A2)

When ^ 2and 2 are small, the Gaussian factor in (A2) is dominant and the
YIX

integrals may be effectively truncated to a ± 4-sigma excursion about the

peak in the Gaussian. That is, the limits in (A2) are essentially as given

below;

k
ox	 2 <	 ox	 2

2k0 cos 6 - 4 ^kx	 n	

k

x: ` 2ko cos . 6 4 4

-

kx

(A3)

koy	 J 2	 < koy	 + 4 2

	

2k
0
 cos 6 - 4 sky	 ny - 2k0 cos 6	 sky

For this set of limits, Rr 2 , will vary from
PP

R 4 ^kx , 4 ;kY  rPP^ (4 ^kx 4 ky )	 (A4)
C	 \

to

n	

R `-4 ^kX V-4 Ry pp I ( 4 ^
kX -4 ^'y 1	 (ASR (- 4)

a sx and n Y vary over the range of/ integration. However, since the large
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scale slopes are small, (A4) and (A5) do not appreciably depart from

R(0,0)1 2 (0,0), and this product can be removed from inside the integrals

as in (Al). The spectrum function, on the other hand, varies from

S(kox - 8 0 cos 8 49,x , oy - 8k  cos 8 qty

to

SI ox + 8ko cos 8 r.,, , oy + 8k0 cos 9 ^t2

Since o is large, this variation may be significant, especially near 8 -0.

Thus, the spectrum function cannot, in general, be removed from under the

Integral in (A2). However, for 8 sufficiently near to Ir/2 or grazing inci-

dance, the spectrum can be removed since it will not significantly vary over

the ranges of integration.

The above argument demonstrates that for small large scale slopes, the

contribution to (Al) comes from a finite range of surface wavenumbers for 8

f	 near zero. Conversely, the contribution comes from a single wavenumber, i.e. 	
1

(kox oy 	 for 8 near s/2 or grazing incidence.

i
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